
University of Queensland

Mathematics Honours Thesis

Graph Theoretic Analysis of
Relationships Within Discrete Data

Author:
Ivan Lazar Miljenovic

Supervisor:
Professor Peter Adams

Second Reader:
Andriy Kvyatkovskyy

3 November, 2008

Abstract

Graph theory is a useful and powerful mathematical tool that can be utilised to analyse the
relationships between discrete data points. However, there is a lack of general-purpose computing
libraries to help people automate analysis of large data sets. This thesis covers the development
of a library designed to fulfill this hole, as well as a sample application using this library to
analyse the static code complexity of source code.

i

ii

CONTENTS

Contents

Abstract i

Contents iii
List of Figures . iv
List of Tables . iv
List of Listings . iv

1 Introduction 1
1.1 Focus of this Thesis . 1

2 Graph Theory 3
2.1 Graphs . 3
2.2 Subgraphs . 4
2.3 Extra terminology . 4

3 Implementation 5
3.1 Separation of Tasks . 5

3.1.1 Implementation of tasks . 6
3.2 Implementation Details . 6

3.2.1 Haskell Syntax . 6
3.3 Haskell Libraries used . 8

3.3.1 The Functional Graph Library . 8
3.3.2 Haskell Parsing libraries . 9
3.3.3 Haskell graphviz library . 10
3.3.4 Pandoc . 11

4 The Graphalyze Library 13
4.1 Graph Creation . 13
4.2 Graph analysis . 14
4.3 Graph utility functions . 15
4.4 Graph Algorithms . 16

4.4.1 Common Algorithms . 17
4.4.2 Directed Algorithms . 18
4.4.3 Graph Clustering/Collapsing . 19

4.5 Graph Visualisation . 23
4.6 Reporting Results . 23

4.6.1 Pandoc Documents . 24
4.7 Using Graphalyze . 24

5 The SourceGraph Programme 27
5.1 Using SourceGraph . 27
5.2 Analysing Haskell . 29
5.3 SourceGraph limitations . 30

5.3.1 Parsing Limitations . 30
5.3.2 Analysis Limitations . 31
5.3.3 Reporting Limitations . 31
5.3.4 Usage Limitations . 31

5.4 How SourceGraph works . 31

iii

CONTENTS

5.4.1 Converting HSE representation . 32
5.4.2 Chosen analysis algorithms . 33

5.5 Caveats of using SourceGraph . 34

6 Analysis of Results 37

7 Future Work 39

8 Conclusion 41
8.1 Summary of work . 41
8.2 A final note . 42

References 43

Appendices 45

Appendix A Graphalyze license 45

Appendix B Sample SourceGraph Report 45

List of Figures

2.1 Simulating an undirected graph A using a directed graph A’ 3
3.1 Process of converting raw data to information . 5
3.2 Sample directed graph . 9
3.3 Inductive representation of Figure 3.2 . 10
5.1 Graph representation of Listing 4.10 . 30

List of Tables

5.1 Algorithms used to analyse Haskell code . 34

List of Listings

3.1 Distance from origin . 6
3.2 The map function . 7
3.3 Infinite lists in Haskell . 7
3.4 FGL form of Figure 3.2 . 8
4.1 Graph data stored by Graphalyze . 13
4.2 Data to import into Graphalyze . 14
4.3 Importing data into Graphalyze . 14
4.4 Root analysis . 15
4.5 Analysing lengths of lists . 15
4.6 Using any algorithm for analysis . 15
4.7 Creating undirected graphs . 16
4.8 Pseudo-inverse to Listing 4.7 . 16
4.9 Creating simple graphs . 16
4.10 Connected components algorithm . 17

iv

CONTENTS

4.11 Finding end nodes . 18
4.12 Types of end nodes . 19
4.13 Finding the core of the graph . 19
4.14 A simple cluster label type . 20
4.15 Chinese Whispers algorithm . 20
4.16 The Relative Neighbourhood algorithm . 22
4.17 Document representation . 23
4.18 The DocumentGenerator class . 24
4.19 Importing Graphalyze . 24
5.1 Running SourceGraph on itself . 27
5.2 Running SourceGraph on Graphalyze . 28
5.3 Simultaneously parsing all Haskell modules . 32
5.4 Calculating the Cyclomatic Complexity . 34
8.1 Calculating the amount of code produced . 41

v

vi

1 INTRODUCTION

1 Introduction

We live in what is commonly referred to as the “Information Age”. No single definition of this
phrase is agreed upon and its origin is unknown, but Marvin Kranzberg stated that:

. . . the accumulation, manipulation, and retrieval of data by computerized electronic
devices and their application to many facets of human life, [and] computer develop-
ments are transforming industry and society to produce a new “Information Age”.
[16, page 35]

This summarises what many perceive as being one of the critical factors in the development of
the Information Age: the use of technology to more widely disseminate and utilise information.
This information comes in many forms and from many sources. Broadly speaking, we can
categorise information — which in its raw unprocessed form is referred to as data — into two
types: about continuous systems and discrete items. However, whilst many tools and utilities
abound for processing data that represents continuous systems (e.g. matrices for large scale
computations), there is a lack of general-purpose utilities that can be used to examine and
analyse the relationships inherent in discrete data.

Discrete data can come in many forms: authorship lists of scientific papers, address books,
programme source code, etc. However, whilst most people focus on the contents of these data
sources, it is quite often the relationships between individual datums that provide the more
interesting source of information. For example, consider people’s address books. By following
the relationships from one person to another by their presence in the corresponding address
book, the structure of the underlying social networks present in the initial data source become
apparent.

The analysis of data is rooted deeply in mathematical theory. For example, mathematical
tools such as matrices are often used to process large amounts of raw numeric data, and statistical
techniques are used on data collated from experiments, etc. As such, when considering how to
analyse relationships in discrete data it is natural to look for a branch of mathematics that fits.
In this case, the area of combinatorics known as graph theory is eminently suitable, as it deals
explicitly with mathematical structures known as graphs that are used to model the very kind of
relationships that we wish to analyse. For a brief overview of graph theory (and more specifically
the definitions used throughout this thesis), please see Section 2.

1.1 Focus of this Thesis

This thesis aims at developing a software library to assist people in using graph-theoretic tech-
niques to analyse and visualise the relationships within their data. As a sample application of
this library, a program to analyse source code is also developed. A major focus on the library
is to make it extensible: only generic analysis algorithms are included, whilst still providing
sufficient access to the internals of the system to allow the person utilising the library to create
new analysis algorithms.

There are many possible algorithms and analysis techniques that could be implemented in
the proposed software library. To simplify matters, the library will be initially constrained at
providing algorithms that would be of use for a relatively sparse directed graph (by which we
mean that is has a relatively low number of relationships per data point. This matches many
types of discrete data sources of interest, such as the address book and source code examples
listed above.

This is by no means the first usage of graph theory in a real world setting. However, no
mention of any general-purpose analysis library or technique was able to be found. Some similar
applications from which ideas were taken are:

1 of 54

1 INTRODUCTION 1.1 Focus of this Thesis

Network Theory/Analysis Analyses various types of networks (technical, social, hierarchical,
etc.) as graphs. Differing in terms of the focus of the analysis and in that these graphs are
the dataset rather than a normally disregarded subcomponent of the datasets. [27]

Visualisation of source code Several tools have been developed to aid programmers in visu-
alising the Call Graph of the functions in source code, however the only type of analysis
normally used is with determining the heavily-used functions from profiling information.
[30]

Graph-based optimisations Several programming language compilers/interpreters use a lim-
ited amount of graph theory to optimise the programs during compilation. [3]

2 of 54

2 GRAPH THEORY

2 Graph Theory

This thesis will predominantly follow standard graph theory terminology, with one exception:
rather than using the term vertex to denote the data points, we shall use the more computer
science-oriented term node, as this is the term used by the graph library (see Section 3.3.1). We
will still refer to a set of nodes/vertices as V however. Other minor differences in terminology
are explained below.

2.1 Graphs

A graph is a set of nodes V along with a set of edges E, where an edge is a tuple (v1, v2) with
v1, v2 ∈ V . Thus, a graph G is defined as:

G = (V,E), where E ⊆ V × V (1)

Note that here we do not require the commonly-used restriction of a graph being non-empty
(i.e. containing at least one node), as several of the algorithms developed in Section 4.4 rely on
allowing empty graphs

By default, we assume that all graphs are directed : that is, if (v1, v2) ∈ E, then we say that
there exists an edge in our graph from v1 to v2. Undirected graphs can be simulated by enforcing
the requirement that

∀ (v1, v2) ∈ E, v1 6= v2 → (v2, v1) ∈ E (2)

Note that with this definition, loops are not duplicated. For an example of this, please see
Figure 2.1.

A

a

c

b

e

d

f

A’

a

c

b

e

d

f

Figure 2.1: Simulating an undirected graph A using a directed graph A’

If we have have an edge (v, v) ∈ E, then this is called a loop. A graph with no loops
and no repeated edges is called simple. In a directed graph, if we have a node r such that
∀ v ∈ R \ {r}, (v, r) /∈ E, then we call r a root of the graph (note that we allow the root node to
have a loop on itself). Similarly, a node l is called a leaf if ∀ v ∈ R \ {l}, (l, v) /∈ E. An isolated
vertex is both a root and a leaf of the graph.

3 of 54

2 GRAPH THEORY 2.2 Subgraphs

An important type of graph is the complete graph on n nodes, denoted Kn. This is a simple
undirected graph where each pair of distinct nodes has an edge between them, i.e. ∀vi, vj ∈
V, vi 6= vj → (vi, vj) ∈ E.

2.2 Subgraphs

A graph G′ = (V ′, E′) is called a subgraph of G = (V,E) if V ′ ⊆ V and E′ ⊆ E. Normally, how-
ever, we only consider subgraphs that have some underlying property. A common classification
of subgraphs is whether or not they are maximal. A subgraph is maximal if it is not possible to
add any more vertices from the set V to V ′ (along with any allowed edges) and maintain that
subgraphs property. For example, it is possible to have a complete graph Kn as a subgraph of
G. If this is the case, then all complete graphs of lower order (i.e. Kn−1,Kn−2, . . .K1) will also
be subgraphs of G. However, if Kn has the largest value of n for all complete subgraphs in G,
then it is the maximal complete subgraph, often called a clique. Note that it is possible to have
multiple maximal subgraphs: we just require the difference of the two node sets to be non-empty
(i.e. for each pair of maximal subgraphs, there is at least one vertex that is in each subgraph
that isn’t in the other). Another property of subgraphs is whether or not they are spanning, that
is if V ′ = V .

A path is an ordered list of distinct nodes v1, v2, . . . , vn such that for each vi in the path (with
i < n), there is an edge from vi to vi+1 (i.e. (vi, vi+1) ∈ E). A cycle is a path with v1 = vn (note
that all other nodes must be distinct). Note that all cycles are thus paths, and all cliques are
composed of cycles (if a clique has n vertices, then it has cycles of length 2, 3 . . . n). Also, when
considering paths, cycles and cliques, we often require the graph to be simple to avoid duplicates
and confusion (e.g. does a clique require all nodes to have loops?).

For a graph G, a subgraph G′ is called connected if for any two distinct nodes in in G′,
there exists a path between the two (treating directed graphs as undirected). Furthermore, it
is a connected component (or merely component) if it is a maximal connected subgraph of G.
For directed graphs, a strongly connected component is a connected component in which the
direction of the edges is used (i.e. there is a directed path between any two distinct nodes); a
weakly connected component is equivalent to the connected component of an undirected graph.

2.3 Extra terminology

In Computer Science, there is often a need for an acyclic connected graph, that is a graph with
no cycles (often required to have no multiple edges as well if it’s a directed graph). Such a graph
is known as a tree, and contains exactly one root. Whilst trees are often required in the literature
to be undirected, the edges are normally implicitly directed from the root outwards. A collection
of trees (that is multiple connected graphs with no connections between them) is called a forest.
The height of a tree is the length of the longest path from the root to a leaf in the tree, and a
subtree is a subgraph that is also a tree.

A graph clustering is a partition of the nodes of a graph into non-overlapping mutually disjoint
subsets that contain some underlying trait. For example, if we consider a graph representing the
contacts listed in an address book, then we may consider a clustering where one set of nodes
contains friends, another work colleagues, a third for utilities, etc. Alternatively, we may cluster
the nodes by contact name (that is, create an alphabetical ordering of all the contacts). This
example shows that there may be more than one valid clustering on a graph.

4 of 54

3 IMPLEMENTATION

3 Implementation

In this section, we examine some implementation specifics of the graph analysis library, such as
what functionality it will include and how it is implemented.

3.1 Separation of Tasks

For any set of discrete datapoints whose relationships we want to analyse, there are four main
stages (see also Figure 3.1 for a visual representation) to go through before raw data can be
utilised as information:

Parse Read the data in from file, the internet, databases, etc. into a usable form.

Graph Creation Turn the parsed data into a graph to analyse.

Analysis Analyse the graph.

Reporting Report the information found from analysis to the user in an appropriate format.

convert to a graph

perform analysis

parse data

use informationcreate report

data source

Figure 3.1: Process of converting raw data to information

As data parsing is strongly tied to the type of data that is to be parsed, the first stage
above is relegated to the program that is using the library. On the other hand, graph creation is
rather trivial: the calling application merely needs to indicate the sets of nodes and edges being
used (as well as some possible extra information that might be of relevance to various analysis
algorithms). As such, a function to create a graph in the required format from the supplied
nodes and edges can be implemented in the library.

The library contains a number of algorithms that would be seen as being multi-use (i.e.
suitable for a wide range of data sources). However, in many cases per-use algorithms will be
required. As such, an “open” implementation format will be utilised where users of the library
are able to implement their own custom algorithms and utilise them as well.

For reporting the graphs, people will quite often want to view the results in different formats:
plain text, LATEX documents, HMTL web pages, custom data types for use in other applications,
etc. As such, the reporting format will also be “open”: for those who want to produce a document
of some kind, a simplified document structure will be provided with extensible output support;
otherwise, the user can utilise the results from the analysis directly.

5 of 54

3 IMPLEMENTATION 3.2 Implementation Details

3.1.1 Implementation of tasks

When actually developing the software, these tasks were split into the Graphalyze library and
the SourceGraph programme. For more information on these pieces of software, please see
Section 4 and Section 5 respectively.

3.2 Implementation Details

The chosen programming language for implementing the software is the purely functional lan-
guage Haskell [22]. As a functional language, it looks more “mathematical” than standard
imperative languages such as C, Fortran, etc. This arises because — like other functional lan-
guages — Haskell’s model of computation arises from Alonzo Church’s λ-Calculus rather than
Turing Machine (though they are both equivalent to each other). Part of the reason for choosing
Haskell was the available libraries in Section 3.3.

3.2.1 Haskell Syntax

Haskell syntax comes in two main yet related parts: type signatures and the actual funtion
definitions. Due to Haskell’s strong static typing using the Hindley-Milner type system, explicit
type signatures are usually optional as they can be derived from the actual function, but often
serve as extra documentation. Type signatures also often look mathematical. To compare
mathematical syntax to Haskell syntax, let us consider the function that calculates the Eulerian
distance from the origin, with (3) showing the formal mathematical definition (though (4) has
the more common usage):

dE : R× R→ R+

(x, y)→
√
x2 + y2

(3)

dE(x, y) =
√
x2 + y2 (4)

and compare this to the Haskell version found in Listing 3.1:

1 distE :: (Double ,Double) → Double

2 distE (x,y) = sqrt (x^2 + y^2)

3

4 -- Or in what 's known as _Curried form_

5 distE ' :: Double → Double → Double

6 distE ' x y = sqrt (x^2 + y^2)

Listing 3.1: Distance from origin

Note that in Haskell, Double covers floating point numbers (with the precision being dependent
on the computer architecture), but we can’t restrict it to non-negative numbers like we do with
R+ in (3). It should be obvious that line 1 of Listing 3.1 is almost identical to the statement of
the domain, etc. in (3), but that the actual function syntax is more similar to “normal” function
usage as in (4).

The Curried form that the comment in line 5 alludes to is a technique (named after Haskell
Curry, which the Haskell language is also named after) where a function that takes in an n-tuple
of arguments and converts it to an equivalent form where it is used as a chain of functions, each
of which takes one argument. For example, the function distE' 2 will take in a value for the y

value, and return the distance from the origin for the position (2, y) (i.e. it is equivalent to the
function f(y) = dE(2, y)).

6 of 54

3.2 Implementation Details 3 IMPLEMENTATION

As an example of a commonly used Haskell function, let us consider the definition of the map

function, which applies a supplied function to every item in a list of values:

1 map :: (a → b) → [a] → [b]

2 map _ [] = []

3 map f (x:xs) = f x : map f xs

Listing 3.2: The map function

Note that whilst we have lined up the two equal signs and the type signature, this is purely for
readability purposes. This example demonstrates the often-used technique of pattern matching
on a data structure: the first second line matches for empty lists denoted by the square brackets
(and using an underline to denote that the value of the first parameter isn’t utilised) whilst the
last line matches on a non-empty list, which is recursively defined as an element (in this case x)
appended onto another list (denoted by xs).

The map function also demonstrates two other common traits of functional languages: the use
of higher-order functions (where functions can – and often do – take other functions as param-
eters) and usage of recursion as a looping parameter. Compared to other functional languages,
however, Haskell is also pure, which means that — like variables in mathematical functions —
the value of parameters to functions are immutable. This example also highlights one major
difference between Haskell and mathematical syntax: the low usage of bracketing. Haskell code
takes full use of function composition, Currying, etc. and as such brackets are generally only used
for tuples and occasional grouping: even the non-Curried example in Listing 3.1 has brackets on
the left hand side only because it takes in a tuple (in this case just a pair) as its only parameter,
not because the brackets denote the function arguments.

Another attribute of Haskell compared to other languages is that it features non-strict se-
mantics, where strict languages require all function parameters to be fully evaluated before the
function can use them. Most implementations of Haskell implement this as lazy evaluation, where
values are only evaluated when they need to be and as much as they need to be. Due to this, it
is possible to implement infinite data structures in Haskell, such as the following:

1 -- The list of all positive integers. The Integer data type allows

...infinite

2 -- precision integers , as opposed to the fixed size Int data type.

3 positiveInts :: [Integer]

4 positiveInts = [1..]

5

6 -- Use a list comprehension to list all positive even integers.

7 evenInts :: [Integer]

8 evenInts = [n | n ← positiveInts , even n]

Listing 3.3: Infinite lists in Haskell

Line nine above uses list comprehensions — the syntax of which are based upon mathematical
set comprehensions — to create the list of all positive even integers, using the predicate even.
Haskell can utilise infinite data structures because they are never fully evaluated: if we try and
find the sum of all the positive integers using sum positiveInts and then print the result, the
program will eventually terminate due to a lack of computer memory. Note that this is because
we are evaluating a variable that is then kept in memory: if we instead wanted to evaluate the
list without using an extra variable (that is, sum [1..] :: Integer), the program won’t run out
of memory as elements of the list are discarded as soon as their value is added to the running
sum).

7 of 54

3 IMPLEMENTATION 3.3 Haskell Libraries used

Haskell libraries/applications are commonly split up into logical groupings known as modules
with one module per file. The standard — but by no means required — mapping from modules
to files is that the module A.B.C is found in the file — relative to the root of the source directory
structure — A/B/C.hs (where “X/” denotes the directory “X”). The extension “.hs” denotes
Haskell source code; alternatively, it can be “.lhs” if the module is coded using Literate Haskell,
where rather than special delimiters used to separate comments from code, delimiters are required
for the code.

3.3 Haskell Libraries used

A number of free/open-source libraries were used when developing the software. The major ones
of these are listed below. All of these libraries are available from the Haskell software repository
website hackageDB [12], which is built upon the Haskell Cabal library [14].

3.3.1 The Functional Graph Library

Martin Erwig’s Functional Graph Library (FGL) [4] is based upon his paper about an alterna-
tive method of computationally representing graphs [6]. Normally, graphs are stored as either
adjacency matrices or an adjacency list. However, he proposed that graphs can be stored and
utilised in an inductive fashion. In the FGL library, a graph is either:

• empty

• a graph G = (V,E) extended with a node v /∈ V and lists of edges to and from nodes in V
(and also loops on v)

This extension on a graph is called a context, with undirected graphs being emulated by directed
graphs (see Section 2.1). A simplified view of a context is that it is a three-tuple containing
the following (actually, FGL seperates out the node ID from its label, and edges can also have
labels):

1. A set of predecessor nodes P , with P ⊆ V ∪ {v}

2. The node v, where v /∈ V

3. A set of successor nodes S, with S ⊆ V ∪ {v}

Typically, v /∈ S ∩P (i.e. if there is a loop on v, then v is either its own predecessor or successor,
but not both). Thus, if we define the “&” symbol as the application of a context to a pre-existing
graph (i.e. the composition function for graphs), then we have that if G′ = (P, v, S) &G, then
V ′ = {v} ∪ V , ∀v′ ∈ p, (v′, v) ∈ E′ and ∀v′ ∈ s, (v, v′) ∈ E′.

For example, consider the graph in Figure 3.2. One way we can represent this graph using a
simplified form of FGL (where we ignore node and edge labels) as follows:

1 g :: Graph

2 g = ([1] ,6 ,[6]) & (

3 ([3 ,4] ,5,[]) & (

4 ([] ,4 ,[2]) & (

5 ([1] ,3 ,[2]) & (

6 ([1] ,2 ,[1]) & (

7 ([] ,1,[]) & empty)))))

Listing 3.4: FGL form of Figure 3.2

8 of 54

3.3 Haskell Libraries used 3 IMPLEMENTATION

Note that the extra bracketing here is required because of the associativity of the & operator, and
to ensure the types are satisfied. Figure 3.3 is a visual representation of the inductive process of
building up this graph, with each box representing an intermediary inductive graph. The actual
order of nodes chosen when constructing inductive graphs is arbitrary, as long as the edges listed
in the contexts are already present in the graph.

g

1

3

2

5

4

6

Figure 3.2: Sample directed graph

The inverse of graph composition is of course graph decomposition. FGL provides two differ-
ent graph decomposition operators. The match function takes in a node and a graph, and returns
the context containing that node (if that node is indeed in the graph) and the rest of the graph.
Whilst match can be considered the deterministic inverse of &, the non-deterministic inverse of &
is matchAny, which will return an arbitrary context and the remaining graph. Note that matchAny

will throw an error if it is applied to an empty graph. [5]
Algorithms using the FGL library often utilise its inductive nature: decomposing a graph in

FGL is akin to peeling an onion, taking off a context at a time and recuring until the empty graph
is reached. However, most of the functions that come with the FGL library return the nodes in
the relevant subgraph and not the subgraph itself, so have been re-implemented in Section 4.4.
Another reason to do so is FGL doesn’t store and manipulate nodes by their label, but by an
arbitrary integer number used to represent that node. Thus, whenever the actual “name” of the
node is required additional work is done to obtain it from the graph.

3.3.2 Haskell Parsing libraries

The Haskell-Src (often called haskell-src) library is a complete Haskell parser written in Haskell
that parses code that conforms to the Haskell 98 Revised Standard [22] along with some exten-
sions. However, the de-facto Haskell implementation — the [Glorious] Glasgow Haskell Compiler

9 of 54

3 IMPLEMENTATION 3.3 Haskell Libraries used

g

1

3

2

5

4

6

empty

Figure 3.3: Inductive representation of Figure 3.2

(GHC) [15] — has numerous extensions available [7] that do not conform with the standard, and
thus haskell-src won’t parse them. However, the Haskell-Src with Extensions (HSE or haskell-
src-exts) library is an extension to haskell-src that can parse these extensions as well as some
extra ones. As such, the SourceGraph application uses this library to parse Haskell code. One
major failing with haskell-src-exts is that it is poorly documented: for some reason, its Haddock
[19] (a tool to generate documentation from annotated Haskell source code) documentation fails
to build.

Another library utilised is Cabal [14], which stands for “Common Architecture for Building
Applications and Libraries”. Cabal is a library for specifying how to build a Haskell package,
and is utilised by SourceGraph to determine which information about the piece of software to
analyse.

3.3.3 Haskell graphviz library

It is arguable that the GraphViz [9] program is the method for computationally drawing graphs.
However, whilst several Haskell libraries for GraphViz are available, none fulfilled all the criteria
required for Graphalyze. The closest was the graphviz [24] (note the difference in capitaliza-
tion) library by Matthew Sackmann, yet it had no support clustering or differentiating between
directed and undirected graphs (however, unlike most of the other options available, it directly
utilised FGL graphs). Thus — with Matthew’s permission — I extended the library to include
such support. A more thorough rundown on its features (as well as how it compares to the
other available options) can be found in the announce email I sent to the haskell@haskell.org
mailing list [21].

10 of 54

haskell@haskell.org

3.3 Haskell Libraries used 3 IMPLEMENTATION

3.3.4 Pandoc

Markdown [10] is a lightweight markup language primarily designed to create html webpages
from simple text files that are just as easily readable as plain text files. John MacFarlane’s
Pandoc [18] is a Haskell implementation of the original Markdown program that can not only
convert (a slightly altered and extended) Markdown to html, but also supports exporting to
numerous other filetypes such as LATEX, rich text format (rtf), Open Document Text (odt), etc.
as well as importing html, LATEX, etc. Not only that, but it is a fully fledged document library
as well (though output to Open Document Text via the library seems not to work, as it requires
zip compression which Pandoc achieves via its executable rather than through its library).

11 of 54

12 of 54

4 THE GRAPHALYZE LIBRARY

4 The Graphalyze Library

Graphalyze is the name given to the graph analysis library (the name being a portmanteau of
Graph and the American spelling of analyze), with four main areas of focus:

1. Graph creation

2. Graph analysis

3. Graph utility functions

4. Graph algorithms

5. Graph visualisation

6. Reporting results

Comparing the above to the areas listed in Section 3.1, items three and four above have been
split off from the general analysis section. As such, Graphalyze can in this sense be considered
as a general graph-manipulation library as well. Furthermore, item five can be considered an
extension to the graphviz library (see Section 3.3.3).

Following the standard trend of Haskell library licensing (where libraries are released under
a permissive free software license), Graphalyze is distributed under a 2-Clause BSD License
(also known as the FreeBSD License or the BSD-2 License), which can be found in Appendix A.
Graphalyze is available from hackageDB at:

http://hackage.haskell.org/cgi-bin/hackage-scripts/package/Graphalyze

with the source repository at:
http://code.haskell.org/Graphalyze

At the time of writing, the latest available version is 0.4. As the source code is publicly available,
this thesis will not include a complete copy. However, we shall examine interesting snippets.

4.1 Graph Creation

The Graphalyze library utilises two different types of data for the given data source: the graph
representing the relationships in that data source, and — if the relationships are directed — any
expected root datums. For the sake of simplicity, edges aren’t allowed to have labels attached to
them.

1 -- We use graphs with node labels of type 'a' and no edge labels.

2 type AGr a = Gr a ()

3

4 -- We store a graph , and any expected roots.

5 data GraphData a = GraphData { graph :: AGr a,

6 wantedRoots :: [LNode a]

7 }

Listing 4.1: Graph data stored by Graphalyze

Here, Gr is a basic tree-based graph datatype, and LNode represents a labelled node.
To create the graph, the user needs to provide information on the relationships inherent in

the data source. We require a list of data points, a list of relationships, any expected root nodes
and whether or not the graph is directed. Note that if directed is true, then the value of roots
is ignored.

13 of 54

http://hackage.haskell.org/cgi-bin/hackage-scripts/package/Graphalyze
http://code.haskell.org/Graphalyze

4 THE GRAPHALYZE LIBRARY 4.2 Graph analysis

1 data ImportParams a = Params { dataPoints :: [a],

2 relationships :: [(a,a)],

3 roots :: [a],

4 directed :: Bool

5 }

Listing 4.2: Data to import into Graphalyze

The actual graph creation function importData then assigns an integer value to each data
point (as this is what FGL uses to identify each node), converts the relationships to (label-less)
edges and creates the graph. A simplified version that doesn’t set the root node and ignores the
direction parameter is (the Ord parameter is required to specify an ordering on the node labels):

1 importData :: (Ord a) => ImportParams a → GraphData a

2 importData params = GraphData { graph = dataGraph }

3 where

4 -- Adding unique integer values to each of the data points.

5 lNodes = zip [1..] (dataPoints params)

6 -- Create a lookup map from the data point to its integer value.

7 nodeMap = M.fromList $ map (uncurry (flip (,))) lNodes

8 -- Find the integer value for the given data point.

9 findNode l = M.lookup l nodeMap

10 -- Validate a edge after looking its values up.

11 validEdge (v1 ,v2) = case (findNode v1, findNode v2) of

12 (Just x, Just y) → Just $ addLabel (x,y)

13 _ → Nothing

14 -- Add an empty edge label.

15 addLabel (x,y) = (x,y,())

16 -- The valid edges in the graph.

17 graphEdges = catMaybes $ map validEdge (relationships params)

18 -- Construct the graph.

19 dataGraph = mkGraph lNodes graphEdges

Listing 4.3: Importing data into Graphalyze

Note that one advantage of the method used for graph creation — specifically for creating the
graph edges in lines eleven to thirteen — is that the relationship list can reference non-existent
nodes!. This means that if an analysis is being performed on a subset of the data source, then
the user doesn’t need to ensure that all the data points listed in the list of relationships are also
in the list of nodes, as this function will remove those relationships that are invalid. This also
applies to the root node list.

4.2 Graph analysis

At the moment, Graphalyze only considers two general-purpose analysis functions. The first
of these is to analyse the roots provided when constructing the graph with those found in the
graph. The classifyRoots function in Listing 4.4 returns three different lists of nodes:

• Those roots that are expected and roots of the graph.

• Those roots that are expected but are not roots of the graph.

• Those roots of the graph that are not expected.

14 of 54

4.3 Graph utility functions 4 THE GRAPHALYZE LIBRARY

1 classifyRoots :: (Eq a) => GraphData a

2 → ([LNode a], [LNode a], [LNode a])

3 classifyRoots gd = (areWanted , notRoots , notWanted)

4 where

5 g = graph gd

6 -- The expected roots

7 wntd = wantedRoots gd

8 -- The actual roots of the graph

9 rts = rootsOf g

10 -- Find those nodes that are in both lists

11 areWanted = intersect wntd rts

12 -- The nodes that are only in the expected list

13 notRoots = wntd \\ rts

14 -- The nodes that are roots but not wanted

15 notWanted = rts \\ wntd

Listing 4.4: Root analysis

Note that in lines twelve and fourteen, \ is the Haskell list difference function, analogous to the
mathematical set difference function.

The second analysis function does not work on graphs directly, but can be used to analyse
the lengths of paths, cycles, etc. in the graph. It returns the mean and standard deviation in
the lengths of these lists, as well as all lists that are longer than one standard deviation away
from the mean with their lengths.

1 lengthAnalysis :: [[a]] → (Int ,Int ,[(Int ,[a])])

2 lengthAnalysis as = (av ,stdDev ,as '')
3 where

4 as ' = addLengths as

5 ls = map fst as '
6 -- statistics ' is a function that returns the rounded mean and

7 -- standard deviation of a list of integers.

8 (av ,stdDev) = statistics ' ls

9 as'' = filter (λ(l,_) → l > (av+stdDev)) as '

Listing 4.5: Analysing lengths of lists

In general, however, there are many algorithms that you might wish to apply to your data.
The applyAlg function is the preferred way of doing so rather than applying it directly, in case
the layout of the GraphData datatype changes in future:

1 applyAlg :: (AGr a → b) → GraphData a → b

2 applyAlg f = f ◦ graph

Listing 4.6: Using any algorithm for analysis

It is now possible to utilise any algorithm listed in Section 4.4 or indeed defined elsewhere on
the relationships in the data being analysed.

4.3 Graph utility functions

Whilst the Functional Graph Library comes with a large number of functions for graphs, there are
still many generic utility functions that might be required. Furthermore, in the case of the undir

function to convert an directed graph to an undirected one (see Section 2.1), the FGL version

15 of 54

4 THE GRAPHALYZE LIBRARY 4.4 Graph Algorithms

duplicates all edges, even loops, which goes against the criteria in (2). As such, a modified
version can be found in Graphalyze that duplicates all non-loop edges (gmap applies the given
function to all Contexts in the graph):

1 undir :: (Eq b, DynGraph gr) => gr a b → gr a b

2 undir = gmap dupEdges

3 where

4 dupEdges (p,n,l,s) = (ps',n,l,ps)
5 where

6 -- All edges , predecessor and successor.

7 ps = nub $ p ++ s

8 -- Take only those edges that aren 't loops.

9 ps' = filter (not ◦ isLoop) ps

10 isLoop (_,n') = n == n'

Listing 4.7: Creating undirected graphs

A pseudo-inverse to undir can also be found for those algorithms that do not work well when
edges are duplicated. This function works by making all duplicated edges successor edges only.

1 oneWay :: (DynGraph g, Eq b) => g a b → g a b

2 oneWay = gmap rmPre

3 where

4 -- Remove predecessor edges that are also successor edges.

5 rmPre (p,n,l,s) = (p \\ s,n,l,s)

Listing 4.8: Pseudo-inverse to Listing 4.7

Another criteria that some algorithms require is that the given graphs are simple. The
following function removes loops and multiple edges:

1 mkSimple :: (DynGraph gr) => gr a b → gr a b

2 mkSimple = gmap simplify

3 where

4 -- Remove loops

5 rmLoops n = filter ((/=) n ◦ snd)

6 -- Remove multiple edges

7 rmDups = nubBy ((==) `on` snd)

8 -- Remove loops and edges

9 simpleEdges n = rmDups ◦ rmLoops n

10 -- Simplify the given Context

11 simplify (p,n,l,s) = (p',n,l,s')
12 where

13 p' = simpleEdges n p

14 s' = simpleEdges n s

Listing 4.9: Creating simple graphs

Various other utility functions are also defined, including the statistics' function used in
Listing 4.5 and functions to find fixed-points of the given function with initial value (note that
these functions assume that the given function does indeed converge).

4.4 Graph Algorithms

The five main criteria used when writing the algorithms found in Graphalyze are:

16 of 54

4.4 Graph Algorithms 4 THE GRAPHALYZE LIBRARY

1. They should be easy to read.

2. The algorithm should follow the graph structure.

3. Be dependent solely upon the graph structure (i.e. graph-invariant).

4. Require no outside input.

5. Where possible, to be developed from scratch.

The only exceptions to these are the two clustering algorithms in Section 4.4.3, which are not
original (and one of which requires a random seed). Note also that despite Graphalyze working
on graphs with no edge labels, these algorithms should work for any graph.

Whilst FGL comes with quite a few different graph algorithms, most of them work on the
level of nodes rather than on graphs. For example, the connected components algorithm in
Section 4.4.1.

There are three types of algorithms included in Graphalyze: Common algorithms (work on
all graphs), Directed algorithms and Clustering/Collapsing algorithms.

4.4.1 Common Algorithms

Connected Components

Unlike the FGL-provided function components, the Graphalyze function componentsOf returns
a list of graphs that are the connected components of the original graph.

To find each connected component, we take a node from the remaining graph, then recursively
extract its neighbours until the entire component has been extracted. We then choose another
node and repeat the process. Note in particular the functions extractNode and nodeExtractor in
Listing 4.10: they are corecursive, in that each one calls the other.

1 -- The unfoldr function used here will keep calling splitComponent

2 -- until it returns a `Nothing ' value.

3 componentsOf :: AGr a → [AGr a]

4 componentsOf = unfoldr splitComponent

5

6 -- Attempt to extract a single component , returning that component and

7 -- the remaining graph.

8 splitComponent :: AGr a → Maybe (AGr a, AGr a)

9 splitComponent g

10 | isEmpty g = Nothing

11 | otherwise = Just ◦ -- Get the type right

12 first buildGr ◦ -- Create the subgraph

13 extractNode ◦ -- Extract components of subgraph

14 first Just ◦ -- Getting the types right

15 matchAny $ g -- An arbitrary node to begin with

16

17 -- Recursively extract all neighbours of the given context.

18 extractNode :: ADecomp a → ([AContext a], AGr a)

19 extractNode (Nothing ,gr) = ([],gr) -- Reached the end

20 extractNode (Just ctxt , gr)

21 | isEmpty gr = ([ctxt], empty) -- No graph left to decompose

22 | otherwise = -- Add this context to the beginning of the list

23 first (ctxt:) ◦
24 -- Recursively extract out the neighbours.

17 of 54

4 THE GRAPHALYZE LIBRARY 4.4 Graph Algorithms

25 foldl ' nodeExtractor ([],gr) $ nbrs

26 where

27 -- The neighbours of this context.

28 nbrs = neighbors ' ctxt

29

30 -- Helper function for extractNode to perform graph decompositions.

31 nodeExtractor :: ([AContext a], AGr a) → Node → ([AContext a], AGr a)

32 nodeExtractor cg@(cs ,g) n

33 | gelem n g = first (++ cs) -- Append cs to the result.

34 -- Extract all neighbours of n from g.

35 ◦ extractNode $ match n g

36 | otherwise = cg

Listing 4.10: Connected components algorithm

Finding Cliques, Cycles and Chains

A chain is a maximal path v1, v2, . . . , vn where for each interior node vi, vi−1 is its only predeces-
sor and vi+1 is its only successor (the first condition also holds for vn, and the second condition
for v1).

The algorithms for finding cliques, cycles and chains are all similar in how they work. They
operate on both directed and undirected graphs, though chains use the result of oneWay form
Listing 4.8 as it uses both successor and predecessor edges, whereas the other two only follow
successor edges. All three results are returned as ordered lists of nodes (since the corresponding
graph can be easily re-constructed from this list, whereas the graphs representing connected
components for example can’t be re-constructed as easily). Another common characteristic is
that they all require the graph to be simple, and hence first call mkSimple to ensure this.

The outline of the functions are conceptually similar to how componentsOf operate: choose
an initial node, then extract out all related nodes (note that for chains, we merely follow related
nodes and don’t remove them from the graph) and recurse. For cliques, we find all complete
subgraphs of order two which contain the given node, and try to combine them into larger
complete subgraphs. Cycles and chains just follow along for as long as they can, though a cycle
is only deemed valid if it does indeed end at the same node it started at.

The clique detection algorithm undergoes post-processing to remove any complete subgraphs
that aren’t maximal. Cycle detection has an optional post-processing stage where cycles that
are part of complete subgraphs (and hence part of a clique) are removed.

4.4.2 Directed Algorithms

End Nodes

Directed algorithms are all about dealing with end nodes, by which we mean either root, leaf or
singleton nodes (i.e. those nodes which have either no predecessors, no successors or both). We
can use a generic function to find all end nodes of a given type

By “End Nodes”, we refer to either root, leaf or singleton nodes (recall that we allow loops on
these nodes). We can use a generic function to cater for all three scenarios. A simplified version
that ignores node labels can be found in Listing 4.11, using the utility function filterNodes that
returns all nodes in the graph that match the given predicate.

1 -- Find all end nodes of the required type.

2 endBy :: (Graph g) => (g a b → Node → [Node]) → g a b → [Node]

3 endBy f = filterNodes (endNode f)

18 of 54

4.4 Graph Algorithms 4 THE GRAPHALYZE LIBRARY

4

5 -- Return true if the given node is an end node of the required type.

6 endNode :: (Graph g) => (g a b → Node → [Node]) → g a b →
...Node → Bool

7 endNode f g n = case (f g n) of

8 [] → True

9 [n'] → n' == n -- Allow loops

10 _ → False

Listing 4.11: Finding end nodes

We can use the endBy function to find all roots, leaves and singletons of a graph:

1 -- Find all roots of the graph.

2 rootsOf :: (Graph g) => g a b → [Node]

3 rootsOf = endBy pre

4

5 -- Find all leaves of the graph.

6 leavesOf :: (Graph g) => g a b → [Node]

7 leavesOf = endBy suc

8

9 -- Find all singleton nodes in the graph.

10 singletonsOf :: (Graph g) => g a b → [Node]

11 singletonsOf = endBy neighbors

Listing 4.12: Types of end nodes

Core of the Graph

The “core” of the graph G is a subgraph G′ = (V ′, E′) where there are no end nodes. To obtain
the core of the graph, we can recursively remove all roots and leaves of the graph (note that a
singleton is both a root and a leaf, and thus doesn’t require a special case):

1 coreOf :: (DynGraph g, Eq a, Eq b) => g a b → g a b

2 coreOf = fixPointGraphs stripEnds

3 where

4 stripEnds gr ' = delNodes roots ◦ delNodes leaves $ gr'
5 where

6 roots = rootsOf gr '
7 leaves = leavesOf gr'

Listing 4.13: Finding the core of the graph

where fixPointGraphs is a utility function that finds the fixed point of a graph-based function
(i.e. it finds a graph G such that f(G) = G).

For an example of why the core could be a useful thing to find for a graph, consider the
hierarchy of a business. If a problem is found which someone can’t solve, they may pass the
problem on to their superiors. This could recursively happen until it reaches the central board
of the company, who then pass the problem around to each other. As such, in certain scenarios
the core of a graph could be where most of the “work” in the data source is done.

4.4.3 Graph Clustering/Collapsing

Two clustering algorithms have been implemented: Chinese Whispers [2] and CLUSTER [1]
(henceforth, this latter algorithm will be called Relative Neighbourhood to avoid confusion).

19 of 54

4 THE GRAPHALYZE LIBRARY 4.4 Graph Algorithms

Whereas most of the more commonly used clustering algorithms require some kind of input (e.g.
expected number of clusters) from the user [8], these two algorithms require no input at all (save
for a random seed for Chinese Whispers). Also implemented is an algorithm to collapse a graph.

When clustering the nodes in a graph, the cluster that a given node belongs to is stored in its
node label. A simple type used for purposes of explanation during this section is (using integers
to represent a given cluster):

1 type Cluster a = (a,Int)

Listing 4.14: A simple cluster label type

Chinese Whispers algorithm

The Chinese Whispers algorithm is a non-deterministic graph clustering algorithm for undirected
graphs with weighted edges. Graphalyze features an adapted version of the algorithm that
also works on directed graph but doesn’t utilise edge weightings. Instead, weighting is increased
on nodes that are part of “interesting structures” such as cliques and root nodes.

A simplistic overview of the algorithms is:

1. Assign each unique cluster label.

2. Sort the nodes into some random order. For each node in turn, it joins the most popular
cluster in its neighbourhood (where popularity is defined as the sum of the node weightings
in that cluster).

3. Repeat Step 2. until a fixed point is reached.

This results in an algorithm that has a runtime that is O (|E|).
Since the graph is non-deterministic, it is possible that for some graphs no fixed point may be

reached (with the algorithm oscillating between a few different graph clusterings). The random
sorting of the nodes in Step 2. should alleviate this problem, as well as by including an implicit
loop on each node such that its own weighting is taken into account when calculating cluster
popularity.

A simplified version of the implementation (with equal weightings for each node) is as follows
(note that StdGen is Haskell’s standard pseudo-random number generator type):

1 -- The actual Chinese Whispers algorithm.

2 chineseWhispers :: (Eq a, Eq b, DynGraph gr) => StdGen → gr a b

3 → gr (Cluster a) b

4 chineseWhispers g gr = fst -- drop the random seed

5 -- Find the fixed point of whispering

6 $ fixPointBy eq whispering (gr ',g)
7 where

8 eq = equal `on` fst

9 ns = nodes gr

10 whispering (gr '',g') = foldl ' whisperNode (gr'',g'') ns '
11 where

12 -- Shuffle the nodes to ensure the order of choosing a new

13 -- cluster is random.

14 (ns',g'') = shuffle g' ns

15 gr' = addWhispers gr

16

17 -- Choose a new cluster for the given Node. Note that this updates

20 of 54

4.4 Graph Algorithms 4 THE GRAPHALYZE LIBRARY

18 -- the graph each time a new cluster value is chosen.

19 whisperNode :: (DynGraph gr) => (gr (Cluster a) b, StdGen)

20 → Node → (gr (Cluster a) b, StdGen)

21 whisperNode (gr,g) n = (c' & gr',g')
22 where

23 (Just c,gr ') = match n gr

24 (g',c') = whisper gr g c -- Choose a new cluster.

25

26 -- Choose a new cluster for the given Context.

27 whisper :: (Graph gr) => gr (Cluster a) b → StdGen

28 → Context (Cluster a) b → (StdGen ,Context (Cluster a) b)

29 whisper gr g (p,n,al ,s) = (g',(p,n,al {whisp = w'},s))
30 where

31 (w',g') = case (neighbors gr n) of

32 -- Singleton node: stay in the same cluster.

33 [] → (whisp al ,g)

34 -- Include the current node 's cluster when finding

35 -- the most popular cluster in the neighbourhood.

36 ns → chooseWhisper g (addLabels gr (n:ns))

37

38 -- Choose which cluster to pick by taking the one with maximum sum of

39 -- weightings. If more than one has the same maximum , pick one of

40 -- these at random.

41 chooseWhisper :: StdGen → [LNode (Cluster a)] → (Int ,StdGen)

42 chooseWhisper g lns = pick maxWsps

43 where

44 -- This isn 't the most efficient method of choosing a random list

45 -- element , but the graph is assumed to be relatively sparse and

46 -- thus ns should be relatively short.

47 pick ns = first (ns!!) $ randomR (0,length ns - 1) g

48 -- Find the popularity of each cluster.

49 whispPop = map (second length) ◦ groupElems whisp $ map label lns

50 -- Find all those clusters of maximum popularity.

51 maxWsps = map fst ◦ snd ◦ head $ groupElems (negate ◦ snd) whispPop

52

53 -- Make the graph suitable for the Chinese Whispers algorithm.

54 addWhispers :: (DynGraph gr) => gr a b → gr (Cluster a) b

55 addWhispers g = gmap augment g

56 where

57 -- Since each node has its own unique number , we can use that as

58 -- its initial unique cluster.

59 augment (p,n,l,s) = (p,n,(l,n),s)

Listing 4.15: Chinese Whispers algorithm

Relative Neighbourhood algorithm

The Relative Neighbourhood algorithm is aimed more at discrete points with a position then
an actual graph, as it clusters points based the distances between them. Since nodes in a
graph don’t have an explicit spatial position, at first glance it seems that this algorithm isn’t
applicable. However, the Haskell graphviz library (see Section 3.3.3) includes a function where
the it is possible to obtain the parsed output from the GraphViz programme, including where it
places each node. As such, we can use these positions to partition the graph.

21 of 54

4 THE GRAPHALYZE LIBRARY 4.4 Graph Algorithms

Fundamental to this algorithm is the concept of relative neighbours: in a point set P , two
points x, y ∈ P are relative neighbours with distance d(x, y) if there is no node z ∈ P \{x, y} such
that d(x, z) ≤ d(x, y) and d(y, z) ≤ d(x, y). Intuitively, this means that if we draw circles of radii
d(x, y) centred at x and y, there are no points in the overlapping region. From all the relative
neighbours in P , it is possible to construct a relative neighbourhood graph (RNG) by having an
edge between all relative neighbours with the edge weightings being the distance between the
two points. The Relative Neighbourhood algorithm then clusters the RNG, and has a runtime
that is O

(
|P |2

)
.

One adaptation that Graphalyze uses is to use a fuzzy distance. Since due to rounding
issues and the inability of computers to accurately store and represent real numbers, we consider
all distances to be integers. To calculate an integral distance, we take the ceiling of the standard
Eulerian distance function (see (3) and (4) for this function). This fuzzy distance still seems to
meet the criteria for a metric geometry.

Rather than show the entire implementation, Listing 4.16 shows just the function that directly
clusters the RNG as per the original Relative Neighbourhood algorithm. Post-processing is then
done on the list of nodes produced to actually assign each node in the original graph to a cluster.

1 -- | Performs the actual clustering algorithm on the RNG.

2 nbrCluster :: (DynGraph gr) => gr a Int → [[Node]]

3 nbrCluster g

4 | numNodes == 1 = [ns] -- Can 't split up a single node.

5 | eMax < 2∗eMin = [ns] -- The inter -cluster relative neighbours

6 -- are too close too each other.

7 | null thrs = [ns] -- No threshold value available.

8 | single cg' = [ns] -- No edges meet the threshold deletion

9 -- criteria.

10 | nCgs > sNum = [ns] -- Over -fragmentation of the graph.

11 | otherwise = concatMap nbrCluster cg '
12 where

13 ns = nodes g

14 numNodes = noNodes g

15 sNum = floor (sqrt $ fI numNodes :: Double)

16 les = labEdges g

17 (es,eMin ,eMax) = sortMinMax $ map eLabel les

18 es' = zip es (tail es)

19 sub = uncurry subtract

20 -- First order differences.

21 -- We only need the minimum and maximum differences.

22 (_,dfMin ,dfMax) = sortMinMax $ map sub es '
23 -- We are going to do >= tests on t, but using Int values , so

24 -- take the ceiling.

25 t = ceiling $ (((fI dfMin) + (fI dfMax))/2 :: Double)

26 -- Edges that meet the threshold criteria.

27 thrs = filter (λ ejs@(ej ,_) → (ej ≥ 2∗eMin)
28 && (sub ejs ≥ t)) es'
29 -- Take the first edges that meets the threshold criteria.

30 thresh = fst $ head thrs

31 -- Edges that meet the threshold deletion criteria.

32 rEs = map edge $ filter ((≥ thresh) ◦ eLabel) les

33 g' = delEdges rEs g

34 -- Each of these will also be an RNG

35 cg' = componentsOf g'

22 of 54

4.5 Graph Visualisation 4 THE GRAPHALYZE LIBRARY

36 nCgs = length cg '

Listing 4.16: The Relative Neighbourhood algorithm

(Note that sortMinMax is a function that sorts a list and also returns the minimum and maximum
elements.) One thing that should be immediately obvious is that — despite this being written
in a purely functional language — the implementation of nbrCluster is remarkably close to the
original algorithm specification [1, page 3].

Graph collapsing

It is possible to “collapse” a graph down such that all “interesting” parts of a graph (e.g. cliques,
cycles and chains) are replaced with a single node. As such, collapsing a graph converts it into an
underlying tree (this is not a spanning tree, however, as the number of nodes may be reduced),
and is a way of looking at the “big picture” of what the graph represents. Note that the collapsing
function doesn’t work on undirected graphs, as each pair of nodes form a K2 complete subgraph
(and so the entire graph would be collapsed to a single node).

4.5 Graph Visualisation

Graphalyze includes several extra wrapper functions providing extra functionality to the
graphviz library (see Section 3.3.3) as well some utility functions to assist the programmer in
pretty-printing different types of lists of nodes (e.g. print cycles with an arrow between each pair
of nodes, but don’t insert anything between nodes when printing a path). It is envisaged that
the graphviz wrapper functions will be added upstream to the graphviz library at a later stage
(as it stands, the graphviz library has no functions to aid the programmer in using the GraphViz
programme to create images, but just converts graphs to GraphViz’s dot format; these functions
in Graphalyze act as wrappers around the GraphViz programme itself).

4.6 Reporting Results

Graphalyze includes a cut-down document structure representation:

1 data Document = Doc { -- Document location

2 rootDirectory :: FilePath ,

3 fileFront :: String ,

4 -- Pre -matter

5 title :: DocInline ,

6 author :: String ,

7 date :: String ,

8 -- Main -matter

9 content :: [DocElement]

10 }

11

12 -- Elements of a document.

13 data DocElement = Section DocInline [DocElement]

14 | Paragraph [DocInline]

15 | Enumeration [DocElement]

16 | Itemized [DocElement]

17 | Definition DocInline DocElement

18 | DocImage DocInline Location

19 | GraphImage DocGraph

20

23 of 54

4 THE GRAPHALYZE LIBRARY 4.7 Using Graphalyze

21 -- Inline document elements.

22 data DocInline = Text String

23 | BlankSpace

24 | Grouping [DocInline]

25 | Bold DocInline

26 | Emphasis DocInline

27 | DocLink DocInline Location

28

29 -- Where to save the graph to, and what the backup text should be in

30 -- case the graph can 't be shown.

31 type DocGraph = (FilePath ,DocInline ,DotGraph)

32

33 -- Representation of a location , either on the internet or locally.

34 data Location = URL String | File FilePath

Listing 4.17: Document representation

Note that FilePath is a type alias for String used to denote locations. With this document
structure, the analysis results can be converted into a simple document relatively easily.

However, this document structure by itself can’t create documents. Rather than tying the
programmer to a single type of document output, Graphalyze specifies a DocumentGenerator

class, that can be instantiated to create arbitrary document types:

1 class DocumentGenerator dg where

2 -- Convert idealised 'Document ' values into actual documents ,

3 -- returning the document file created.

4 createDocument :: dg → Document → IO (Maybe FilePath)

5 -- The extension of all document -style files created. Note that

6 -- this doesn 't preclude the creation of other files , e.g. images.

7 docExtension :: dg → String

Listing 4.18: The DocumentGenerator class

Graphalyze also provides several helper functions to assist in creating documents.

4.6.1 Creating documents with Pandoc

As a sample instantiation of the DocumentGenerator class in Listing 4.18, Graphalyze includes
functions that map its abstract document data types into those used by Pandoc. Furthermore,
since Pandoc supports multiple output types, by default Graphalyze includes wrappers to
create html, LATEX, Rich Text Format and Markdown files, with the ability to specify others.

4.7 Using Graphalyze

Graphalyze is a fully documented library using the Haddock [19] documentation generator.
Furthermore, even though it’s split into different modules, all of these modules — except for the
Pandoc document generator module — are re-exported by the overall Analysis module. As such,
to use Graphalyze in your Haskell project, all you need to include in your import list is:

1 import Data.Graph.Analysis

2 -- To use Pandoc to create documents

3 import Data.Graph.Analysis.Reporting.Pandoc

Listing 4.19: Importing Graphalyze

24 of 54

4.7 Using Graphalyze 4 THE GRAPHALYZE LIBRARY

Despite being a relatively new library (the first release being on 29 September 2008), there
has already been at least one other person interested in using Graphalyze for their own project
[31].

25 of 54

26 of 54

5 THE SOURCEGRAPH PROGRAMME

5 The SourceGraph Programme

SourceGraph is an application that utilises the Graphalyze library to analyse the static
complexity of Haskell source code, that is it analyses the source code itself and not how it behaves
at run time. It analyses the code on a per-module basis, cross-module imports as well as the
entire piece of software. Thus, SourceGraph could be an important utility in a programmer’s
toolkit to help them understand and visualise how their code actually fits together and what it’s
doing.

SourceGraph is licensed under the GNU General Public License Version 31, and is available
from hackageDB at:

http://hackage.haskell.org/cgi-bin/hackage-scripts/package/SourceGraph

with the source repository at:
http://code.haskell.org/SourceGraph

At the time of writing, the latest available version is 0.2.

5.1 Using SourceGraph

To run SourceGraph, first navigate to the code base’s root directory, then call the Source-
Graph executable with the software’s Cabal [14] file as the sole argument. This will produce the
analysis report in the “SourceGraph” subdirectory. For example, here is how SourceGraph is
run on itself:

ivan $ ls

Analyse/ _darcs/ Parsing/ setVersion.sh*

Analyse.hs dist/ Parsing.hs SourceGraph.cabal

COPYRIGHT Main.hs Setup.lhs TODO

ivan $ SourceGraph SourceGraph.cabal

Report generated at: SourceGraph/SourceGraph.html

ivan $ ls

Analyse/ _darcs/ Parsing/ setVersion.sh* TODO

Analyse.hs dist/ Parsing.hs SourceGraph/

COPYRIGHT Main.hs Setup.lhs SourceGraph.cabal

ivan $ ls SourceGraph/

Analyse_collapsed.png codeRNG.png

Analyse.Everything_collapsed.png importCluster.png

Analyse.Everything.png importCW.png

Analyse.Imports_collapsed.png importRNG.png

Analyse.Imports.png imports.png

Analyse.Module_collapsed.png Main_collapsed.png

Analyse.Module.png Main.png

Analyse.png Parsing_collapsed.png

Analyse.Utils_collapsed.png Parsing.ParseModule_collapsed.png

Analyse.Utils.png Parsing.ParseModule.png

codeCluster.png Parsing.png

codeCollapsed.png Parsing.Types_collapsed.png

codeCW.png Parsing.Types.png

code.png SourceGraph.html

1http://www.gnu.org/licenses/gpl-3.0.txt

27 of 54

http://hackage.haskell.org/cgi-bin/hackage-scripts/package/SourceGraph
http://code.haskell.org/SourceGraph
http://www.gnu.org/licenses/gpl-3.0.txt

5 THE SOURCEGRAPH PROGRAMME 5.1 Using SourceGraph

Listing 5.1: Running SourceGraph on itself

(where ivan $ is just the prompt, emphasised to differentiate it from the results).
For comparison, we also show the output when running SourceGraph on the source code

of Graphalyze:

ivan $ ls

_darcs/ dist/ LICENSE setVersion.sh*

Data/ Graphalyze.cabal Setup.lhs TODO

ivan $ SourceGraph Graphalyze.cabal

Report generated at: SourceGraph/Graphalyze.html

ivan $ ls

_darcs/ dist/ LICENSE setVersion.sh* TODO

Data/ Graphalyze.cabal Setup.lhs SourceGraph/

ivan $ ls SourceGraph/

codeCluster.png

codeCollapsed.png

codeCore.png

codeCW.png

code.png

codeRNG.png

Data.Graph.Analysis.Algorithms.Clustering_collapsed.png

Data.Graph.Analysis.Algorithms.Clustering.png

Data.Graph.Analysis.Algorithms_collapsed.png

Data.Graph.Analysis.Algorithms.Common_collapsed.png

Data.Graph.Analysis.Algorithms.Common_core.png

Data.Graph.Analysis.Algorithms.Common.png

Data.Graph.Analysis.Algorithms.Directed_collapsed.png

Data.Graph.Analysis.Algorithms.Directed.png

Data.Graph.Analysis.Algorithms.png

Data.Graph.Analysis_collapsed.png

Data.Graph.Analysis.png

Data.Graph.Analysis.Reporting_collapsed.png

Data.Graph.Analysis.Reporting.png

Data.Graph.Analysis.Testing_collapsed.png

Data.Graph.Analysis.Testing.png

Data.Graph.Analysis.Types_collapsed.png

Data.Graph.Analysis.Types.png

Data.Graph.Analysis.Utils_collapsed.png

Data.Graph.Analysis.Utils_core.png

Data.Graph.Analysis.Utils.png

Data.Graph.Analysis.Visualisation_collapsed.png

Data.Graph.Analysis.Visualisation.png

Graphalyze.html

importCluster.png

importCW.png

importRNG.png

imports.png

Listing 5.2: Running SourceGraph on Graphalyze

28 of 54

5.2 Analysing Haskell 5 THE SOURCEGRAPH PROGRAMME

Thus, when running SourceGraph on Foo.cabal, it will produce the resulting analysis
report of the project at SourceGraph/Foo.html. It might appear that it takes a long time for
SourceGraph to run, especially on larger code bases: this is mainly due to the time taken to
create the various graph visualisations used in the report, rather than the algorithms or choice
of language.

5.2 Analysing Haskell

There are several advantages in using Haskell as a sample language for analysis purposes, not
least of which is the availability of ready-made parsers (see Section 3.3.2). It has the following
properties in common with most other functional languages as opposed to the more popular
languages such as C and Java:

1. Preference for smaller, more numerous functions over larger monolithic ones.

2. Each function typically calls a larger number of other functions.

3. Due to the high level of polymorphism and higher-order functions, functions are more
re-usable and hence are called more often.

4. The common usage of recursion as a looping construct rather than iteration (e.g. for-loops)
found in imperative languages.

When viewing source code in any language as a graph, we typically use functions/methods/sub-
routines/etc. (depending on the language being used) as nodes in the graph, and function calls
as directed edges. As such, the above list transforms into the following graph properties (when
compared to the graph representation of code written in other languages):

1. Larger number of nodes.

2. Each node typically has a larger out degree.

3. Nodes typically have a larger in degree.

4. Appearance of loops and cycles (non-functional languages generally will have little or no
loops or cycles).

For example, a graph representation of the four functions found in Listing 4.10 on page 17 can
be found in Figure 5.1. Note that whilst componentsOf recursively calls splitComponent until the
remaining graph is empty, this recursive call is hidden by the higher-order function unfoldr. For
more information on this, please see Section 6.

Thus, when representing Haskell code as a graph, the nodes are functions, directed edges are
function calls and graph clusterings are the modules those functions belong in. Root nodes would
be those that are exported in a given module (or exported overall for the entire code base: for a
programme, this will be just the main function) and leaves are any variables or functions that are
not dependent upon other functions/variables in the code base. However, when representing the
module imports as a graph, the nodes are the modules, the directed edges are the module imports
and the clusters are the directories that module is in (see Section 3.2.1 for more information).
Root modules are those that are exported and available for use in a library, and the overall
programme module in an application.

29 of 54

5 THE SOURCEGRAPH PROGRAMME 5.3 SourceGraph limitations

extractNode

nodeExtractor

componentsOf

splitComponent

Figure 5.1: Graph representation of Listing 4.10

5.3 SourceGraph limitations

At the moment, SourceGraph isn’t as nicely polished an application as one would like. There
are currently four classes classes of limitations:

1. Parsing

2. Analysing

3. Reporting

4. Usage

The majority of these errors are able to be remedied and will be in future.

5.3.1 Parsing Limitations

Whilst Haskell-Src with Extensions provides parsing support for may extensions, as yet Source-
Graph doesn’t fully utilise it for the following classes of extensions:

• Template Haskell (allows meta-programming in Haskell)

• HaRP (regular expression pattern matching)

• HSX (embedding XML into Haskell source code)

At the moment, these types of extensions are silently ignored, mainly due to unfamiliarity with
how they work. These extensions will be supported in a future release.

Many Haskell modules utilise a C pre-processor (cpp) to enable compile-time options (e.g.
support of UTF-8 strings). HSE can’t parse these pre-processing annotations, and attempting to
silently ignore these could have adverse effects on the parsed source. For example, if a function
can be defined one of several ways depending on which compile-time flag is chosen, then by
ignoring the annotations more than one definition of the function will be defined. Also, if a

30 of 54

5.4 How SourceGraph works 5 THE SOURCEGRAPH PROGRAMME

function is commonly found within a library but a version exists if when compiled that library
is chosen not to be utilised, then when parsing it is difficult to tell which version of the function
should be utilised. However, there does exist a library version of the cpp utility: cpphs [28]. A
future release of SourceGraph will utilise this library to be able to fully parse Haskell modules
that require pre-processing.

One parsing limitation that will probably never be supported is what to do with what can
be labelled as data-oriented functions. This covers functions that are part of class definitions or
record statements. Class definition functions (also known as methods are ignored because when
a function uses them, it isn’t possible to tell for which instance (and hence which actual function
definition) they are using. As for record statement functions, these are trivial functions that are
analogous to getter/setter functions in languages such as Java.

5.3.2 Analysis Limitations

The only limitation due to analysis is that there are many more possible analyses that could
be utilised than what are already present. For example, it would be interesting to examine the
depth of each leaf function, using the shortest path from any root function. This would give an
idea of the overall “depth” of the code. Another possible algorithm would be to examine which
functions are the most “popular”, that is those that have the highest number of function calls.

5.3.3 Reporting Limitations

The report output is limited by the DocumentGenerator class utilised (see Listing 4.18). At the
moment, SourceGraph utilises the Pandoc instance, which has the unfortunate tendency to
be a “jack of all trades and master of none”, that is it can produce a wide variety of document
types but a specific LATEX generator for example would no doubt produce better output than
Pandoc does. Most of the reporting problems arise directly from limitations in how Graphalyze
converts its internal Document type to Pandoc’s, and as such when the conversion is improved then
SourceGraph’s reporting capabilities will improve as well. One area where SourceGraph can
be improved though is reporting of “boring” analysis: if only one parseable function exists in
a module (the rest might be class instantiations, etc.) then there isn’t much point in reporting
information just about that module.

5.3.4 Usage Limitations

For more information on how to use SourceGraph, please see Section 5.1. As it stands however,
SourceGraph only runs from the command line (which may or may not be a limitation), and
only analyses Haskell software that utilises Cabal [14] to build themselves (so software such
as GHC [15] which use Makefiles cannot be analysed). Furthermore, output is currently non-
customisable: SourceGraph will produce a single html report file using Portable Network
Graphics (png) images in a subdirectory called SourceGraph inside the software’s root directory.
There are also no help options, etc. provided, and in many cases if anything fails (e.g. a parsing
error) then it does so silently with no explanation.

Despite all these usage limitations/errors, care has been taken to ensure that SourceGraph
can’t do any damage to either the code or to the filesystem in general.

5.4 How SourceGraph works

Following is a simplified outline of how SourceGraph works:

31 of 54

5 THE SOURCEGRAPH PROGRAMME 5.4 How SourceGraph works

1. Parse the Cabal file, returning the exposed modules (or if it produces an executable, which
file contains the main function).

2. Find every Haskell file (i.e. those with a hs or lhs extension) and attempt to parse it.

3. Convert the HSE representation of all parseable files into the one used by SourceGraph
(which is fundamentally a mapping from a function name to the functions which it calls).

4. Analyse the modules, imports and overall code base, creating the Document representation.

5. Create the report.

Note that SourceGraph is smart enough to ignore “trivial” Haskell files, such as those
generated by Cabal when building a Haskell package, and those that might be kept in side a
Darcs [23] repository (Darcs is a distributed version-control system written in Haskell, and is
thus very popular in the Haskell community).

5.4.1 Converting HSE representation

Note in particular that when SourceGraph converts HSE’s representation into one that it
can use, it attempts to assign all functions found to the modules they belong in, with any
unknown functions (i.e. from other libraries or unparseable modules) are discarded. But to do
so, it has to already have parsed all the files and found all the functions, which in turn requires
that all possible functions are known so that functions can be assigned to modules, and so on
ad infinitum. This kind of infinite loop processing is where lazy languages like Haskell (see
Section 3.2.1) excel: whilst we have to know which functions are available from each module to
be able to assign functions to modules, we don’t have to have this mapping to find all functions
defined in each module. Thus, we can utilise a programming idiom known as Tying the Knot
[26] where we (lazily) partially evaluate a data structure before using the partial evaluations to
finish evaluation.

When converting the parsed data, tying the knot is utilised twice:

• To assign module names to functions in the current module whilst finding all the functions
defined in that module.

• To assign module names to functions from other modules utilised inside the current module
before all those other modules have been parsed.

As an example of tying the knot, let us consider the second example, found in Listing 5.3. The
tying the knot is performed in lines twenty-six and twenty-seven, which recursively rely on each
other to evaluate.

1 -- The file contents as well as its location.

2 type FileContents = (FilePath ,String)

3

4 -- A high -level viewpoint of a Haskell module.

5 data HaskellModule = Hs { moduleName :: ModuleName

6 , imports :: [ModuleName]

7 , exports :: [Function]

8 , functions :: FunctionCalls

9 }

10

11 -- A lookup map of HaskellModules.

12 type HaskellModules = Map ModuleName HaskellModule

32 of 54

5.4 How SourceGraph works 5 THE SOURCEGRAPH PROGRAMME

13

14 -- The name of a module. The 'Maybe ' component refers to the possible

15 -- path of this module.

16 data ModuleName = M (Maybe String) String

17

18 -- Parse all the files and return the map , utilising Tying the Knot.

19 parseHaskell :: [FileContents] → HaskellModules

20 parseHaskell fc = hms

21 where

22 ms = parseFiles fc

23 -- The next two lines recursively rely on each other , using

24 -- laziness to continuously partially evaluate one and then

25 -- the other. The createModuleMap and parseModule functions are

26 -- defined elsewhere.

27 hms = createModuleMap hss

28 hss = map (parseModule hms) ms

29

30 -- Parse all the files that you can.

31 parseFiles :: [FileContents] → [HsModule]

32 parseFiles = catMaybes ◦ map parseFile

33

34

35 -- Attempt to parse an individual file using Haskell -Src with

...Extensions.

36 parseFile :: FileContents → Maybe HsModule

37 parseFile (p,f) = case (parseModuleWithMode mode f) of

38 (ParseOk hs) → Just hs -- Able to parse the module

....

39 _ → Nothing -- Unable to parse.

40 where

41 mode = ParseMode p

Listing 5.3: Simultaneously parsing all Haskell modules

5.4.2 Chosen analysis algorithms

The algorithms from Graphalyze chosen to analyse the static complexity of various parts of
Haskell source code can be found in Table 5.1. Note that “Entire Code Base” refers to the
functions from all modules. When visualising clusters, the current clusters in the graph are first
visualised (for imports, this is the directory in which the module can be found; for the code base,
functions are clustered by the module they’re in) and then the two clustering algorithms found
in Section 4.4.3 are used to visualise alternate clustering arrangements. Connected components
are important when programming because they indicate that the current module/code base can
be safely split up since the two sections are completely independent of each other, whereas chains
indicate that the given functions/modules can be combined into one: to the rest of the code base,
they only appear as one anyway.

There is one other analysis algorithm that is applied to each level of interest: calculating its
Cyclomatic Complexity [20]. Note that technically the usage of cyclomatic complexity in these
contexts isn’t as intended: cyclomatic complexity is a software metric intended to measure the
number of linearly different paths through an application written using a structured programming
language (which Haskell — as a functional language — isn’t). Such an application is represented

33 of 54

5 THE SOURCEGRAPH PROGRAMME 5.5 Caveats of using SourceGraph

Algorithm Per-Module Imports Entire Code Base

Graph Visualisation 4 4 4

Collapsed Graph Visualisation 4 4

Graph Core Visualisation 4 4

Cluster Visualisation 4 4

Root Analysis 4 4 4

Connected Components 4 4 4

Clique Finding 4 4

Cycle Finding 4

Clique-less Cycle Finding 4 4

Chain Finding 4 4 4

Table 5.1: Algorithms used to analyse Haskell code

as a graph where the nodes are functions but with edges between nodes indicating possible data-
flow between those functions. For such a graph G = (V,E), the cyclomatic complexity M is
defined as:

M = |E| − |V |+ 2P (5)

where P is the number of connected components in G. This definition assumes that there is only
one possible “exit” from the programme: if it is possible to exit the programme from multiple
points, the definition then becomes:

M = |E| − |V |+ P +R (6)

where R is the number of possible exit points.
Despite not being the original intended use, SourceGraph still uses Cyclomatic Complexity

as defined in (5) as a useful graph-based metric for all three levels of interest. No literature has
been found using it as a metric in this fashion for functional languages (indeed, it seems to
be oriented only at stand-alone applications and not libraries), and as such SourceGraph is
unable to give any explanation of what the value returned actually represents from the code.
The Cyclomatic Complexity is calculated as follows:

1 cyclomaticComplexity :: GraphData a → Int

2 cyclomaticComplexity gd = e - n + 2∗p
3 where

4 p = length $ applyAlg componentsOf gd

5 n = applyAlg noNodes gd

6 e = length $ applyAlg labEdges gd

Listing 5.4: Calculating the Cyclomatic Complexity

5.5 Caveats of using SourceGraph

Despite utilising and manipulating the source code at a graph level, SourceGraph is not a
Haskell refactoring tool: instead, look at HaRe [17]. The reason for this is that all information
on the structure of the source code is lost after converting the parsed output into SourceGraph’s
internal state, let alone when converting it to a graph. Furthermore, its output should be taken

34 of 54

5.5 Caveats of using SourceGraph 5 THE SOURCEGRAPH PROGRAMME

with a grain of salt, as it doesn’t actually understand what its analysing. For example, it
might recommend that you split a module up into several modules because there are numerous
components in there, whereas you’ve created it like that since it’s a library/utility module and
all those functions are related in what they do, if not in how they do it (e.g. most standard math
library modules in any language have a large number of functions which in no way depend upon
each other).

35 of 54

36 of 54

6 ANALYSIS OF RESULTS

6 Analysis of Results

This section examines sample results from the SourceGraph application. The results them-
selves can be found in Appendix B, and cover analysis of XMonad [25]. Note that we will be
solely focusing on the results obtained, and not on the visual aspect or layout.

XMonad is an extensible tiling window manager for the X Window System written in Haskell.
It is a combination application and library (note that it is usually utilised with an extension li-
brary known as XMonad-Contrib that is released separately). It might not be a very large
project, but for the purposes of brevity it wouldn’t be beneficial to include the entire Source-
Graph report for a larger one (even SourceGraph itself has a generated report of roughly
twenty-two pages).

One thing that’s immediately obvious is how “wide” the graph quickly becomes, even in
individual modules. This is due to the much larger number of smaller functions typically found
in Haskell code (see Section 5.2). Also, individual modules get more and more complicated rather
quickly.

As for proposed module groupings using the clustering routines, they tend to over-fragment
the modules, though the Relative Neighbourhood algorithm (the second alternative clustering
shown) seems to give slightly better results.

Present in the overall call graph is a function that calls another repeatedly. Without even
examining the source code, this can probably be attributed to a multi-part function definition
that utilises pattern matching (with each separate pattern in the first function calling the second).
This is thus an example of information that can be extracted just from the visual representation
of the code base.

Whilst it was said that Haskell code utilises recursion and function “cycles” a lot more than
non-functional languages, none can be found in the XMonad source. This is because most re-
cursive are hidden within higher order functions. For example, consider the map function in
Listing 3.2: if a function uses map, then the recursion is “hidden away” in the higher order
function. Thus, direct evidence of recursion is usually found in more complicated one-off ex-
amples that are not as easily covered by generic recursion routines. For a direct code example,
extractNode and nodeExtractor in Listing 4.10 cyclically depend upon each other, but the recur-
sive call of splitComponent by componentsOf is hidden away in the higher order function unfoldr.
Even those functions that do directly utilise recursion typically do so within smaller functions
defined within the larger one, which are thus not visible to the rest of the code base (and which
SourceGraph will strip out since it isn’t a defined function).

XMonad has five connected components (this is easier to see in the collapsed view). This,
however, is indicative of the fact that it is not only an application, but also an extensible library.
As such, many of the functions might not be directly utilised by the main program, but are
available for end users to use to customise their installation.

Examining the cyclomatic complexity of, we find that there does indeed seem to be relation-
ship between the “visual” complexity and the one calculated. The decision on whether or not it
reveals useful information to the programmer will have to be delayed until more code bases are
analysed using SourceGraph and the results compared.

One item that will definitely be useful, however, is the list of chains: it is quite possible that
several of these chains can be compressed down to single functions, thus reducing the complexity
of code.

37 of 54

38 of 54

7 FUTURE WORK

7 Future Work

Whilst Graphalyze and SourceGraph are currently usable, work on them — like almost
any other piece of software — will never truly finish. As it stands, there are already several
outstanding issues and possible future areas of work that can be seen.

Whilst Graphalyze has a fair number of algorithms included in it, there is always room for
more. Also, these algorithms can be further extended by more general-purpose analysis functions
that try and extract something more than just raw data out of the graph. The reporting mini-
library also needs more work. In particular for html output, it would be useful to have “zooming”
support to click on an image and open up a larger version (images are currently hard-coded to be
no larger than fifteen inches wide by ten inches high (since the GraphViz programme measures
in inches) so as not to be too big). Furthermore, html output would be much nicer to read if it
was split over multiple pages and utilised Cascading Style Sheets (CSS) to produce something
other than plain html.

Furthermore, many of the visualisation helper functions should probably be moved to the
graphviz library, as they are wrapper functions that were not included due to lack of time on
Matthew Sackmann’s part. Visualisation functionality that as yet isn’t included however is to
colour the nodes in the graphs, for example using node colour as a visual indication of a nodes
degree. Some of the graph algorithms might also be more appropriate included in the Functional
Graph Library.

As for SourceGraph, apart from those fixable limitations listed in Section 5.3, the reporting
output could also be made “smarter”, by detecting whether or not the analysis output is actually
interesting. Some attempt at this is already made by not listing for example connected component
analysis if there is already one component, but this should be extended to other analysis types
(for instance, don’t list a chain in the overall analysis section if it consists of nodes from a single
module and hence would have already been listed).

However, possibly the most exciting possible extension that could be made to SourceGraph
is to extend its language capabilities. Benedikt Huber recently released his Language.C library
[13], which is a full C99 parser written in Haskell and analogous to Haskell-Src and Haskell-Src
with Extensions. This will require tweaking of SourceGraph’s internal state, but will allow
greater usage of this utility.

Another possible adaption is to extend the scope of SourceGraph to use it to track data
flow within a programme. This would be useful to visually follow the path data takes throughout
the programme. Also, if profiling information exists then adding that to the graph would aid
the programmer in finding bottlenecks in their code (note that there already exists a Haskell
application that specifically performs this task [32]).

39 of 54

40 of 54

8 CONCLUSION

8 Conclusion

Mathematics is often used to assist people in analysing their raw data to convert it into usable
information. As data sets become larger and larger, computational techniques and libraries are
steadily increasing in importance for data analysis. However, whilst there are a large number
and variety of utilities available to assist people in analysing continuous data, there is a dearth
of resources for computationally analysing discrete data sources and — almost more importantly
— the relationships inherent within such data sources (which indeed might even characterise the
data source).

Graph theory is an extremely useful tool for people who wish to analyse the relationships
between discrete data points. But as it stands there is no general-purpose graph-theoretic library
available for people to use for their own analysis (though there are more specialised libraries
available for tasks such as network theory and analysis).

In this thesis, we have examined a general purpose library aimed at assisting people in utilising
graph theory to analyse discrete data. What’s more, this library is extensible, allowing people
to define and use their own custom analysis functions. This library — called Graphalyze —
is freely available under a two-clause BSD license. Graphalyze is fully documented and comes
with its own mini reporting library to help users produce documents containing their analysis
results.

As a sample application of this library, the SourceGraph application analyses Haskell
source code, using functions for nodes and functions calls for directed edges in the analysis
graph. Whilst this application isn’t quite polished, it is currently usable and returns interesting
and valid results. It is hoped that in the future, SourceGraph becomes a vital part of every
Haskell programmer’s toolkit to help visualise how their code fits together, and find possible
improvements.

8.1 Summary of work

Using David A. Wheeler’s SLOCCount [29] program, we are able to find the total number of
lines of source code produced, as well as use arbitrary values to calculate how much code of this
size would cost to produce:

ivan $ ls

Graphalyze/ SourceGraph/

ivan $ sloccount --multiproject --wide Graphalyze SourceGraph

Creating filelist for Graphalyze

Creating filelist for SourceGraph

Categorizing files.

Finding a working MD5 command

Found a working MD5 command.

Computing results.

SLOC Directory SLOC -by-Language (Sorted)

1226 Graphalyze haskell =1222,sh=4

990 SourceGraph haskell =986,sh=4

Totals grouped by language (dominant language first):

haskell: 2208 (99.64%)

41 of 54

8 CONCLUSION 8.2 A final note

sh: 8 (0.36%)

Total Physical Source Lines of Code (SLOC) = 2,216

Development Effort Estimate , Person -Years (Person -Months) = 0.45 (5.35)

(Basic COCOMO model , Person -Months = 2.4 * (KSLOC **1.05))

Schedule Estimate , Years (Months) = 0.32 (3.78)

(Basic COCOMO model , Months = 2.5 * (person -months **0.38))

Total Estimated Cost to Develop = $ 60,196

(average salary = $56 ,286/year , overhead = 2.40).

SLOCCount , Copyright (C) 2001 -2004 David A. Wheeler

SLOCCount is Open Source Software/Free Software , licensed under the GNU

...GPL.

SLOCCount comes with ABSOLUTELY NO WARRANTY , and you are welcome to

redistribute it under certain conditions as specified by the GNU GPL

...license;

see the documentation for details.

Please credit this data as "generated using David A. Wheeler 's 'SLOCCount
...'."

Listing 8.1: Calculating the amount of code produced

Furthermore, on top of this code was contributed to Matthew Sackmann’s graphviz [24] library
to enable it to differentiate between directed and undirected graphs, as well as drawing graph
clusterings.

8.2 A final note

Whilst Graphalyze can help you turn your raw data into some type of information, it is
important to note that information is only valid within the required context, and that the
results might not always be useful. For example, as seen in Section 6, not all analysis results of
SourceGraph are useful, because the application isn’t a programmer and doesn’t understand
the internal logic of the code (nor does it analyse the resulting graph with any particular context).

This cautionary statement was said best by Arthur C. Clarke in an interview in 2003 [11],
when he said:

But it is vital to remember that information — in the sense of raw data — is not
knowledge; that knowledge is not wisdom; and that wisdom is not foresight. But
information is the first essential step to all of these.

42 of 54

REFERENCES REFERENCES

References

[1] Sanghamitra Bandyopadhyay. An automatic shape independent clustering technique. Pat-
tern Recognition, 37(1):33–45, 2004.

[2] C. Biemann. Chinese Whispers - an Efficient Graph Clustering Algorithm and its Appli-
cation to Natural Language Processing Problems. In Proceedings of the HLT-NAACL-06
Workshop on Textgraphs-06, New York, USA, 2006.

[3] Zdenek Dvorak, Jan Hubicka, Pavel Nejedly, and Josef Zlomekj. Infrastructure for pro-
file driven optimizations in GCC compiler. http://www.ucw.cz/~hubicka/papers/proj/
index.html, 2002. accessed 5 July, 2008.

[4] Martin Erwig. Functional Graph Library/Haskell. http://web.engr.oregonstate.edu/
~erwig/fgl/haskell. accessed 24 March, 2008.

[5] Martin Erwig. FGL/Haskell - a funtional graph library - user guide. http://web.engr.
oregonstate.edu/~erwig/fgl/haskell/old/fgl0103.pdf, 12 April 2001. accessed 24
March, 2008.

[6] Martin Erwig. Inductive graphs and functional graph algorithms. J. Funct. Program.,
11(5):467–492, 2001.

[7] Simon Peyton Jones et. al. GHC Language Features. http://www.haskell.org/ghc/docs/
latest/html/users_guide/ghc-language-features.html. accessed 25 October, 2008.

[8] Guojun Gan, Chaoqun Ma, and Jianhong Wu. Data Clustering: Theory, Algorithms, and
Applications. ASA-SIAM Series on Statistics and Applied Probability. SIAM, 2007.

[9] Emden R. Gansner and Stephen C. North. An Open Graph Visualization System and Its
Applications. Software - Practice and Experience, 30:1203–1233, 1999. http://graphviz.
org.

[10] John Gruber. Markdown. http://daringfireball.net/projects/markdown/.

[11] Nalaka Gunawardene. Humanity will survive information deluge. http://ez.
oneworldsouthasia.net/article/view/74591, 5 December 2003. Interview with Sir
Arthur C. Clarke.

[12] hackageDB. http://hackage.haskell.org. accessed 25 October, 2008.

[13] Benedikt Huber. Language.c - a c99 library for haskell . http://www.sivity.net/
projects/language.c.

[14] Isaac Jones. The haskell cabal: a common architecture for building applications and libraries.
In Marko van Eekelen, editor, 6th Symposium on Trends in Functional Programming, pages
340–354, 2005. http://www.haskell.org/cabal/.

[15] Simon L. Peyton Jones, Cordelia V. Hall, Kevin Hammond, Will Partain, and Philip Wadler.
The Glasgow Haskell compiler: a technical overview. In Proc. UK Joint Framework for
Information Technology (JFIT) Technical Conference, 1993. http://haskell.org/ghc/.

[16] Melvin Kranzberg. The information age: Evolution or revolution? In Bruce R. Guile, editor,
Information Technologies and Social Transformation, number 2 in Series on Technology and
Social Priorities, pages 35–53. National Academy of Engineering, National Academy Press,
October 1984.

43 of 54

http://www.ucw.cz/~hubicka/papers/proj/index.html
http://www.ucw.cz/~hubicka/papers/proj/index.html
http://web.engr.oregonstate.edu/~erwig/fgl/haskell
http://web.engr.oregonstate.edu/~erwig/fgl/haskell
http://web.engr.oregonstate.edu/~erwig/fgl/haskell/old/fgl0103.pdf
http://web.engr.oregonstate.edu/~erwig/fgl/haskell/old/fgl0103.pdf
http://www.haskell.org/ghc/docs/latest/html/users_guide/ghc-language-features.html
http://www.haskell.org/ghc/docs/latest/html/users_guide/ghc-language-features.html
http://graphviz.org
http://graphviz.org
http://daringfireball.net/projects/markdown/
http://ez.oneworldsouthasia.net/article/view/74591
http://ez.oneworldsouthasia.net/article/view/74591
http://hackage.haskell.org
http://www.sivity.net/projects/language.c
http://www.sivity.net/projects/language.c
http://www.haskell.org/cabal/
http://haskell.org/ghc/

REFERENCES

[17] Huiqing Li and Simon Thompson. Formalisation of haskell refactorings. In In Trends
in Functional Programming, 2005. http://www.cs.kent.ac.uk/projects/refactor-fp/
hare.html.

[18] John MacFarlane. Pandoc. http://johnmacfarlane.net/pandoc/.

[19] Simon Marlow. Haddock, a haskell documentation tool. In Haskell ’02: Proceedings of the
2002 ACM SIGPLAN workshop on Haskell, pages 78–89, New York, NY, USA, 2002. ACM.
http://www.haskell.org/haddock/.

[20] Thomas J. McCabe. A complexity measure. In ICSE ’76: Proceedings of the 2nd interna-
tional conference on Software engineering, page 407, Los Alamitos, CA, USA, 1976. IEEE
Computer Society Press.

[21] Ivan Lazar Miljenovic. ANNOUNCE: graphviz-2008.9.20. email sent to the
haskell@haskell.org mailing list, 21 September 2008. http://www.haskell.org/
pipermail/haskell/2008-September/020631.html.

[22] Simon Peyton Jones, Lennart Augustsson, Dave Barton, Brian Boutel, Warren Bur-
ton Joseph Fasel, Kevin Hammond, Ralf Hinze, Paul Hudak, John Hughes, Thomas Johns-
son, Mark Jones, John Launchbury, Erik Meijer, John Peterson, Alastair Reid, Colin
Runciman, and Philip Wadler. The Haskell 98 language and libraries: The revised re-
port. Journal of Functional Programming, 13(1):0–255, Jan 2003. Also available at
http://www.haskell.org/definition/ and through Cambridge Press.

[23] David Roundy. Darcs: distributed version management in Haskell. In Haskell ’05: Proceed-
ings of the 2005 ACM SIGPLAN workshop on Haskell, pages 1–4, New York, NY, USA,
2005. ACM. http://darcs.net/.

[24] Matthew Sackmann and Ivan Lazar Miljenovic. graphviz: GraphViz wrapper for Haskell.
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/graphviz.

[25] Don Stewart and Spencer Janssen. XMonad: A tiling window manager. In Haskell ’07:
Proceedings of the 2007 ACM SIGPLAN Workshop on Haskell, New York, NY, USA, Sep
2007. ACM Press.

[26] Tying the knot. http://www.haskell.org/haskellwiki/Tying_the_Knot.

[27] A. Vitalis, D. J. Monin, and P. Holland. Network Analysis - A Practical Approach. The
Dunmore Press Limited, 1987.

[28] Malcolm Wallace. cpphs: A liberalised re-implementation of cpp, the C pre-processor.
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/cpphs.

[29] David A. Wheeler. SLOCCount. http://www.dwheeler.com/sloccount/.

[30] Call Graph. http://en.wikipedia.org/wiki/Call_graph. accessed 5 July, 2008.

[31] Wirt Wolff. Interest in using graphalyze for a snakes and paths puzzle. Private Communi-
cation, 2 October 2008.

[32] Gregory Wright. prof2dot. http://antiope.com/downloads.html.

44 of 54

http://www.cs.kent.ac.uk/projects/refactor-fp/hare.html
http://www.cs.kent.ac.uk/projects/refactor-fp/hare.html
http://johnmacfarlane.net/pandoc/
http://www.haskell.org/haddock/
http://www.haskell.org/pipermail/haskell/2008-September/020631.html
http://www.haskell.org/pipermail/haskell/2008-September/020631.html
http://www.haskell.org/definition/
http://darcs.net/
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/graphviz
http://www.haskell.org/haskellwiki/Tying_the_Knot
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/cpphs
http://www.dwheeler.com/sloccount/
http://en.wikipedia.org/wiki/Call_graph
http://antiope.com/downloads.html

APPENDIX B SAMPLE SOURCEGRAPH REPORT APPENDICES

Appendices

Appendix A Licence of the Graphalyze library

Copyright (c) 2008, Ivan Lazar Miljenovic <Ivan.Miljenovic@gmail.com >

All rights reserved.

Redistribution and use in source and binary forms , with or without

modification , are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice ,

this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright

notice , this list of conditions and the following disclaimer in the

documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"

AND ANY EXPRESS OR IMPLIED WARRANTIES , INCLUDING , BUT NOT LIMITED TO , THE

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE

ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE

LIABLE FOR ANY DIRECT , INDIRECT , INCIDENTAL , SPECIAL , EXEMPLARY , OR

CONSEQUENTIAL DAMAGES (INCLUDING , BUT NOT LIMITED TO , PROCUREMENT OF

SUBSTITUTE GOODS OR SERVICES; LOSS OF USE , DATA , OR PROFITS; OR BUSINESS

INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY , WHETHER IN

CONTRACT , STRICT LIABILITY , OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)

ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE , EVEN IF ADVISED OF THE

POSSIBILITY OF SUCH DAMAGE.

Appendix B SourceGraph report on XMonad

Starting over the page is a sample output from SourceGraph when run on the source for
XMonad [25]. Note that some quality has been lost due to the conversion from html to pdf
format to let it be embedded into this document.;

45 of 54

Analysis of xmonad

Analysis of each module
Analysis of Main

Visualisation of Main
Collapsed view of Main
Core analysis of Main
Cyclomatic Complexity of Main
Chain analysis of Main

Analysis of XMonad
Visualisation of XMonad
Collapsed view of XMonad
Core analysis of XMonad
Cyclomatic Complexity of XMonad
Component analysis of XMonad

Analysis of XMonad.Config
Visualisation of XMonad.Config
Collapsed view of XMonad.Config
Core analysis of XMonad.Config
Cyclomatic Complexity of XMonad.Config

Analysis of XMonad.Operations
Visualisation of XMonad.Operations
Collapsed view of XMonad.Operations
Core analysis of XMonad.Operations
Cyclomatic Complexity of XMonad.Operations
Root analysis of XMonad.Operations
Component analysis of XMonad.Operations
Chain analysis of XMonad.Operations

Analysis of module imports
Visualisation of imports
Visualisation of module groupings
Cyclomatic Complexity of imports
Import chain analysis

Analysis of the entire codebase
Visualisation of the entire software
Visualisation of overall function calls
Collapsed view of the entire codebase
Overall Core analysis
Overall Cyclomatic Complexity
Import root analysis
Function component analysis
Overall chain analysis

Document Information

Analysed by SourceGraph (version 0.2) using Graphalyze (version 0.4)

Monday 27 October, 2008

APPENDICES APPENDIX B SAMPLE SOURCEGRAPH REPORT

46 of 54

Monday 27 October, 2008

Analysis of each module

Analysis of Main

Visualisation of Main

Collapsed view of Main

The collapsed view of a module collapses down all cliques, cycles, chains, etc. to
make the graph tree-like.

Core analysis of Main

The core of a module can be thought of as the part where all the work is actually
done.

The module Main is a tree.

Cyclomatic Complexity of Main

The cyclomatic complexity of Main is: 1.

For more information on cyclomatic complexity, please see: Wikipedia:
Cyclomatic Complexity

Chain analysis of Main

The module Main has the following chains:

main -> defaults

These chains can all be compressed down to a single function.

Analysis of XMonad

Visualisation of XMonad

APPENDIX B SAMPLE SOURCEGRAPH REPORT APPENDICES

47 of 54

Collapsed view of XMonad

The collapsed view of a module collapses down all cliques, cycles, chains, etc. to
make the graph tree-like.

Core analysis of XMonad

The core of a module can be thought of as the part where all the work is actually
done.

The module XMonad is a tree.

Cyclomatic Complexity of XMonad

The cyclomatic complexity of XMonad is: 0.

For more information on cyclomatic complexity, please see: Wikipedia:
Cyclomatic Complexity

Component analysis of XMonad

The module XMonad has 0 components. You may wish to consider splitting it up.

Analysis of XMonad.Config

Visualisation of XMonad.Config

Collapsed view of XMonad.Config

The collapsed view of a module collapses down all cliques, cycles, chains, etc. to
make the graph tree-like.

Core analysis of XMonad.Config

The core of a module can be thought of as the part where all the work is actually
done.

APPENDICES APPENDIX B SAMPLE SOURCEGRAPH REPORT

48 of 54

The core of a module can be thought of as the part where all the work is actually
done.

The module XMonad.Config is a tree.

Cyclomatic Complexity of XMonad.Config

The cyclomatic complexity of XMonad.Config is: 1.

For more information on cyclomatic complexity, please see: Wikipedia:
Cyclomatic Complexity

Analysis of XMonad.Operations

Visualisation of XMonad.Operations

Collapsed view of XMonad.Operations

The collapsed view of a module collapses down all cliques, cycles, chains, etc. to
make the graph tree-like.

Core analysis of XMonad.Operations

The core of a module can be thought of as the part where all the work is actually
done.

The module XMonad.Operations is a tree.

Cyclomatic Complexity of XMonad.Operations

The cyclomatic complexity of XMonad.Operations is: 22.

For more information on cyclomatic complexity, please see: Wikipedia:

APPENDIX B SAMPLE SOURCEGRAPH REPORT APPENDICES

49 of 54

For more information on cyclomatic complexity, please see: Wikipedia:
Cyclomatic Complexity

Root analysis of XMonad.Operations

These nodes are those that are in the export list and roots:

manage, unmanage, kill refresh, rescreen focus, sendMessage setLayout
screenWorkspace extraModifiers cleanMask, initColor restart mouseMoveWindow
mouseResizeWindow mkAdjust

These nodes are those that are not in the export list but roots:

killWindow, windows, setWMState hide, reveal, clientMask setInitialProperties,
clearEvents tileWindow, containedIn, nubScreens getCleanedScreenInfo,
setButtonGrab setTopFocus, setFocusX broadcastMessage
sendMessageWithNoRefresh updateLayout, withFocused, isClient floatLocation,
pointScreen pointWithin, float, mouseDrag applySizeHints applySizeHintsContents
applySizeHints', applyAspectHint applyResizeIncHint, applyMaxSizeHint

Component analysis of XMonad.Operations

The module XMonad.Operations has 6 components. You may wish to consider
splitting it up.

Chain analysis of XMonad.Operations

The module XMonad.Operations has the following chains:

getCleanedScreenInfo -> nubScreens -> containedIn

setTopFocus -> setFocusX -> setButtonGrab

restart -> broadcastMessage

pointScreen -> pointWithin

mkAdjust -> applySizeHints

applySizeHintsContents -> applySizeHints'

These chains can all be compressed down to a single function.

Analysis of module imports

Visualisation of imports

APPENDICES APPENDIX B SAMPLE SOURCEGRAPH REPORT

50 of 54

Visualisation of module groupings

Here is the current module groupings:

Here are two proposed module groupings:

APPENDIX B SAMPLE SOURCEGRAPH REPORT APPENDICES

51 of 54

Here are two proposed module groupings:

Cyclomatic Complexity of imports

The cyclomatic complexity of the imports is: 2For more information on cyclomatic
complexity, please see:Wikipedia: Cyclomatic Complexity

Import chain analysis

The imports have the following chains:

Main -> XMonad

These chains can all be compressed down to a single module.

Analysis of the entire codebase

Visualisation of the entire software

Visualisation of overall function calls

APPENDICES APPENDIX B SAMPLE SOURCEGRAPH REPORT

52 of 54

Visualisation of overall function calls

Here is the current module grouping of functions:

Here are two proposed module groupings:

Collapsed view of the entire codebase

The collapsed view of code collapses down all cliques, cycles, chains, etc. to make
the graph tree-like.

Overall Core analysis

The core of software can be thought of as the part where all the work is actually
done.

The code is a tree.

Overall Cyclomatic Complexity

The overall cyclomatic complexity is: 48For more information on cyclomatic
complexity, please see:Wikipedia: Cyclomatic Complexity

Import root analysis

These functions are those that are available for use and roots:

Main.main

These functions are those that are available for use but not roots:

XMonad.Config.defaultConfig XMonad.Operations.manage
XMonad.Operations.unmanage XMonad.Operations.rescreen
XMonad.Operations.extraModifiers XMonad.Operations.cleanMask
XMonad.Operations.initColor XMonad.Operations.mkAdjust

APPENDIX B SAMPLE SOURCEGRAPH REPORT APPENDICES

53 of 54

XMonad.Operations.extraModifiers XMonad.Operations.cleanMask
XMonad.Operations.initColor XMonad.Operations.mkAdjust

Function component analysis

The functions are split up into 5 components. You may wish to consider splitting
the code up into multiple libraries.

Overall chain analysis

The functions have the following chains:

Main.main -> Main.defaults

XMonad.Operations.getCleanedScreenInfo -> XMonad.Operations.nubScreens ->
XMonad.Operations.containedIn

XMonad.Operations.setTopFocus -> XMonad.Operations.setFocusX ->
XMonad.Operations.setButtonGrab

XMonad.Operations.restart -> XMonad.Operations.broadcastMessage

XMonad.Operations.pointScreen -> XMonad.Operations.pointWithin

XMonad.Operations.mkAdjust -> XMonad.Operations.applySizeHints

XMonad.Operations.applySizeHintsContents ->
XMonad.Operations.applySizeHints'

These chains can all be compressed down to a single function.

APPENDICES APPENDIX B SAMPLE SOURCEGRAPH REPORT

54 of 54

	Title Page
	Abstract
	Contents
	List of Figures
	List of Tables
	List of Listings

	Introduction
	Focus of this Thesis

	Graph Theory
	Graphs
	Subgraphs
	Extra terminology

	Implementation
	Separation of Tasks
	Implementation of tasks

	Implementation Details
	Haskell Syntax

	Haskell Libraries used
	The Functional Graph Library
	Haskell Parsing libraries
	Haskell graphviz library
	Pandoc

	The Graphalyze Library
	Graph Creation
	Graph analysis
	Graph utility functions
	Graph Algorithms
	Common Algorithms
	Directed Algorithms
	Graph Clustering/Collapsing

	Graph Visualisation
	Reporting Results
	Pandoc Documents

	Using Graphalyze

	The SourceGraph Programme
	Using SourceGraph
	Analysing Haskell
	SourceGraph limitations
	Parsing Limitations
	Analysis Limitations
	Reporting Limitations
	Usage Limitations

	How SourceGraph works
	Converting HSE representation
	Chosen analysis algorithms

	Caveats of using SourceGraph

	Analysis of Results
	Future Work
	Conclusion
	Summary of work
	A final note

	References
	Appendices
	Appendix Graphalyze license
	Appendix Sample SourceGraph Report

